LAMP-TR-057 MDA 9049-6C-1250
CAR-TR-953 September 2000
CS-TR-4186

A New MERIT Version for MPEG-2 Encoded Files
Alain Pagani

Center for Automation Research
University of Maryland
College Park MD, 20742-3275

Ecole Centrale de Lyon
69130 Ecully, France

Abstract
The MPEG Encoded Retrieval and Indexation Toolkit (MERIT) performs video segmen-

tation of MPEG files in the compressed domain, using an algorithm based on macroblock
type statistics. It was written in C by V. Kobla in 1995 for his doctoral work at the Uni-
versity of Maryland. Kobla’s code dealt with MPEG-1 files only. In this report we update
MERIT to analyze MPEG-2 files as well. We modify the file parsing process to account
for the MPEG-2 specifications. We account for the new motion compensation modes in-
troduced by MPEG-2 in preliminary computations, generating data structures that allow
the original MERIT segmentation algorithm to work properly. A series of tests confirmed
the validity of our solutions. The new version 4.0 of MERIT is a superset of MERIT 3.3,
insofar as it gives the same results for MPEG-1 files, and is able to analyze MPEG-2 files
using almost all the available options. Further improvements could be made to address
key-frame storage and higher chrominance formats.

Keywords: video segmentation, MERIT, MPEG specifications, macroblock, motion
compensation.

This research was funded in part by the Department of Defense and the Army Research Laboratory
under Contract MDA 9049-6C-1250. Thanks to Sara Larson for formatting this report.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
SEP 2000 2. REPORT TYPE 00-09-2000 to 00-09-2000
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A New MERIT Version for MPEG-2 Encoded Files £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
L anguage and M edia Processing L abor atory, I nstitute for Advanced REPORT NUMBER

Computer Studies,University of Maryland,College Park,M D,20742-3275

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 42
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

LAMP-TR-057 MDA 9049-6C-1250
CAR-TR-953 September 2000
CS-TR-4186

A New MERIT Version
for MPEG-2 Encoded Files

Alain Pagani

A New MERIT Version
for MPEG-2 Encoded Files

Alain Pagani

Center for Automation Research
University of Maryland
College Park MD, 20742-3275

Ecole Centrale de Lyon
69130 Ecully, France

Abstract
The MPEG Encoded Retrieval and Indexation Toolkit (MERIT) performs video segmen-

tation of MPEG files in the compressed domain, using an algorithm based on macroblock
type statistics. It was written in C by V. Kobla in 1995 for his doctoral work at the Uni-
versity of Maryland. Kobla’s code dealt with MPEG-1 files only. In this report we update
MERIT to analyze MPEG-2 files as well. We modify the file parsing process to account
for the MPEG-2 specifications. We account for the new motion compensation modes in-
troduced by MPEG-2 in preliminary computations, generating data structures that allow
the original MERIT segmentation algorithm to work properly. A series of tests confirmed
the validity of our solutions. The new version 4.0 of MERIT is a superset of MERIT 3.3,
insofar as it gives the same results for MPEG-1 files, and is able to analyze MPEG-2 files
using almost all the available options. Further improvements could be made to address
key-frame storage and higher chrominance formats.

Keywords: video segmentation, MERIT, MPEG specifications, macroblock, motion
compensation.

1 Overview

MERIT (MPEG FEncoded Retrieval and Indexing Toolkit [2, 11]) is a package that per-
forms various MPEG-based analyses, such as video segmentation [5, 10], motion analysis,
extraction of estimated DC coefficients or of flow vector information. It was written in
C by V. Kobla for his doctoral work at the University of Maryland. Video segmentation
consists of identifying breaks or cuts in an MPEG-encoded video clip, thus dividing the
video into shots. A shot can be defined as a minimal sequence of frames resulting from
a continuous uninterrupted recording by an input device such a camera. In MERIT, the
analysis is performed in the compressed domain using available macroblock and motion
vector information, and, if necessary, DCT information. When MERIT is run without
any options and with just the MPEG filename, it prints to stdout the list of key-frame
numbers, which are the first frames of the segmented shots. These key-frames can be used
in further applications, such as archiving or indexing of video sequences [3, 4]. Options
available with MERIT will be described in Section 2.2.

MPEG is a digital compression standard for both video and audio, developed by the
ISO MPEG committee. ISO is developing a family of MPEG standards. The group
produced MPEG-1, the standard for Video CD and MP3; MPEG-2, the standard for
Digital Television set top boxes and DVD; and MPEG-4, the standard for multimedia on
the Web. It is also developing the MPEG-7 “Multimedia Content Description Interface”.

Until now, MERIT could extract information only from MPEG-1 encoded files. An
error would occur if one tried to read an MPEG-2 encoded file with MERIT. The main
goal of this project consisted in developing a new version of MERIT which is able to
process MPEG-2 encoded files. Actually, MPEG-2 is a superset of MPEG-1. This means
that the MPEG-2 standard includes the MPEG-1 standard. Thus, an MPEG-2 version
of MERIT works with MPEG-1 files as well.

In this report, the current MERIT 3.3 program is first outlined in detail. A description
of the specific MPEG syntax used in this report can be found in Appendix A. Then,
we describe what needs to be removed or changed in Version 3.3 of MERIT. Finally,
we report on the implementation of the new version, the problems encountered, and
their solutions.

2 MERIT 3.3

2.1 System overview

Compressed video in MPEG format is first segmented into shots (continuous uninter-
rupted sequences of frames). The segmented video is then passed on to a motion vector
analysis routine where global camera motion information is extracted. Using the camera
motion information, shots are subdivided into subshots. Finally, key-frames are extracted
from these shots and subshots.

A shot change usually occurs abruptly between two frames. Such a shot change
is called a cut. Cut detection is performed using the macroblock (MB) type. If a P-
frame contains primarily intra-coded MBs, this suggests that these MBs could not be
predicted from the previous reference frame, and a cut may have occurred between the

previous I- or P-frame and the current P-frame. If in a B-frame a majority of MBs are
forward-predicted from the previous I- or P-frame, there is a high probability that a shot
change has occurred between the current frame and the next I- or P-frame. Similarly, if
a majority of MBs in a B-frame are backward-predicted, there is a high probability that
a shot change has occurred between the previous I- or P-frame and the current frame.
If there is a shot change, all B-frames before the cut must have a majority of forward-
predicted MBs, and all B-frames after the cut must have a majority of backward-predicted
MBs. Tests for the presence of these features are employed in the detection process.

When the macroblock information is found to be inconclusive, the algorithm uses the
DCT coefficients to confirm the existence of shot changes. After the shots have been
found, MERIT uses the motion vector information to find subshots, or scene changes. A
paper written by V. Kobla [5] provides details about this algorithm.

2.2 Usage

Many options are available with MERIT [2]. When MERIT is run without any options
and with just the MPEG filename, it prints to stdout the list of key-frame numbers,
which are the first frames of the segments defined by the breaks. Depending on the
option, the algorithm uses the I-frames for segmentation analysis (-dct), or performs
DCT validation for certain (-valid) or all (-full) detected cuts. The motion analysis
can also be turned on (-motion). A display window can provide graphic information
about the MB types and motion vectors (-dispMV, ~dispFlow). Moreover, several types
of information can be printed or saved in a file. Finally, one can choose the start-frame
and the end-frame numbers (-start, -end).

2.3 General architecture

MERIT comprises two main components: bit stream parsing and video segmentation.
The first component parses the MPEG file and collects the relevant information in specific
structures. The second component uses this information to perform video segmentation.
As we will see, these two parts are quite independent.

2.3.1 MPEG bit stream parsing

The main() function is located in the MERIT.c file. This function processes the options
and calls Parseblkfile() or ParseDctFile(), both located in the Parse.c file. These
two functions are intermediate functions, insofar as they only set options for another
function that they call, mpeg_stat (), located in main.c.

In fact, mpeg_stat () is the function which parses the stream. It takes two arguments.
The first, mpegfilename, is the name of the file to be parsed. The second, dct, is a
flag indicating whether the DCT coefficients are needed (1) or not (0). The function
mpeg_stat () corresponds to the main() function of another program, called mpeg_stat
and written by Steve Smoot at U. C. Berkeley. The MERIT program includes all files
from mpeg_stat, some of which have been adapted by V. Kobla (filter.c, main.c,
parseblock.c, proto.h,util.c, video.c, video.h). These imported files can easily be

distinguished from the MERIT-specific files, since they begin with a lower-case letter (e.g.
video.c), whereas the MERIT-specific files begin with a capital letter (e.g. Parse.c).

The main purpose of the original mpeg_stat is to provide statistics about the features
of an MPEG-1 encoded file. Therefore it is mainly a parsing program, and it is used by
MERIT. A detailed description of mpeg_stat is provided below. The parsing function
of MERIT is completely performed by the mpeg_stat code, and only uses some global
variables shared by other parts (defined in Global.h and List.h). Actually, mpeg_stat
has been modified to fill in specific global structures with information, instead of passing
it through files, as in the original version.

2.3.2 Storing MPEG information

In order to run the segmentation algorithm, MERIT needs some preliminary information
from the MPEG file. Here i1s a short description of the structures in which the func-
tion mpeg_stat () stores the information. These structures are declared and defined in
Global.h,List.h and List.c

e List.h
This file declares the Line structure as follows:

typedef struct LINE

{

int LineType,blockType,frameNo,gscale,numBits,blockNo;
char frameType,*dctSpecs;
MV *xforw,*back;
struct LINE *next;
} Line;

LineType is the type of the Line, which can be BLOCK (value: 10), SLICE (11),
FRAME (12) or GOP (for Group Of Pictures, value: 13).

blockType is the type of the block, if the LineType is BLOCK. Possible values:
INTRA (200), FORW (201), BI (202), BACK (203), or SKIP (204).

frameNo is the number of the current frame.
gscale is the quantization scale used for the DCT.
numBits is the total number of bits used for a particular MB.

blockNo is the number of the macroblock, when needed (if LineType = BLOCK
only).

frameType is the type of the frame, when needed (‘I’,P’, or ‘B’, if LineType =
FRAME only).

dctSpecs is a string with all the DC and AC coefficients for each block of a mac-
roblock (if LineType = BLOCK only).

forw is the forward motion vector (MV is a structure with the x and y coordinates),
when needed (if LineType = BLOCK only).

3

back is the backward motion vector, when needed (if LineType = BLOCK only).

Initially, the Line information was to be an element of a linked list, as indicated
by the presence of a pointer to the next Line. The function add node() adds a
new empty current node to the list. But actually the program does not use this list
structure. The function add_node() is never called and the information is stored
in a current Line and immediately processed, before the current Line is refreshed
(refreshnode()) and new information is stored.

List.c

This file defines head and current as pointers to Line, and defines the function
add-node() (never called), and the function refresh node(). This function resets
the Line node pointed to by current by setting all the integers or char to 0 and
the pointers to NULL. If the current pointer is null, it creates an empty structure
for Line and stores its address in current. The head pointer is never used, since
only the refresh node() function is called. current points to the Line structure
where all the needed information found in the MPEG bit stream is stored.

Global.h

Global.h defines some helpful integer constants for the understanding of the code
(such as BLOCK = 10, SKIP = 204...). It also declares the function mpeg_stat (),
and some useful structures, such as MV (motion vector, with the z and y coordinates
in half-pixels; brightness values between pixels are computed using bilinear interpo-
lation), £1MV (float motion vector, for averaging). Furthermore, Global.h defines
some structures where the information is stored just after parsing and temporary
storage in the current Line structure. The most important structures are Info
and InfolList

typedef struct INFO
{
int dispFramelNo;
char frameType;
int value;
int numIntra,numForw,numBack,numBidir,numSkip;
int numSkipForw,numSkipBack,numSkipBidir;
MV *xforwMVs;
MV *backMVs;
MV *domMV;
f1MV *meanMV;
int avgAngle;
char *MBTypes;
} Info;

typedef struct INFOLIST

{

Info *info;

int frameNo;

struct INFOLIST *next;
} Infolist;

As we see, all the information about a frame is stored in the Info structure (frame
number, frame type, number of Intra-coded MBs, number of Forward-, Backward-,
and Bidirectionally-predicted MBs, number of all types of Skipped MBs, ...).

This Info for each frame is then put into a list structure (InfoList).

The main difference between the Line structure and the Info structure is that Line
can be used to describe different levels of objects in a video stream, such as Group of
Pictures, Pictures, Slices, MBs and Blocks, depending on the LineType. On the other
hand, Info contains information for a whole frame (picture), such as the frame type
and the number of macroblocks of each type. This structure is used in the segmentation
algorithm, which needs to compare the features of successive frames.

Other structures defined in Global.h (MotionInfo, SceneInfo, RangeList,...) are
used in the segmentation algorithm. However, we don’t need to study these structures,
since our upgrade of MERIT only required a modification of the parsing component

To insert the information stored in the current Line into Info, and then into the
InfoList structure, MERIT uses functions mainly referred to as initInfo(), and defined
in Parse.c. initInfo() has one argument, a pointer to a Line structure. Essentially,
initInfo() deals with current. After each parsing by mpeg_stat (that is, when current
is full), a call to initInfo(current) puts the information into the InfoList structure.
Then, current is refreshed.

There are three initInfo() functions: initInfoBlkMode(), initInfoDctMode(), and
initInfoDCTValidMode(). Only one of them is used each time MERIT is running,
depending on the current mode (options of the program).

2.3.3 Video segmentation

When the parsing is completed, the video segmentation part of MERIT begins its work.
In fact, the segmentation is totally independent of the parsing, once the MPEG bit stream
has been read. Here is a description of all the information MERIT 3.3 currently needs
for the video segmentation:

e Video Stream level:

— horizontal picture size in pixels (h_size)
— vertical picture size in pixels (v_size)

— horizontal picture size in MBs (mb_width)

vertical picture size in MBs (mb_height)

total number of frames in the stream (totalFrames)

— total number of I-frames (numIFrames)

5

o Frame level:

— frame number (display order)

— frame type (‘I’, ‘P’, or ‘B’)
e Macroblock level:

— macroblock number in the frame (0 to mb_width X mb_height — 1)

— macroblock type (FORW, BACK, INTRA, BI, 0 (forward and no motion vector),
SKIP)

— macroblock motion vectors(s)
— macroblock quantization scale

— number of bits used for this MB (numBits)
e Block level (only if the DCT validation is needed):

— DCT quantized DC coefficient (0 to 2040, for intra-coded MBs only)

— DCT quantized AC coefficients : position in matrix (0 to 63) and level (—2047
to 2047) of non-zero coefficients

Four modes of segmentation are provided by MERIT: blockinfo mode (MERIT’s
simplest use, without any option), dct mode (-dct), validation mode (-valid), and full
mode (-full).

When running in blockinfo mode, MERIT uses only the MB_type information. In
fact, for each frame a variable called value is computed. Its numerical value depends on
the picture coding type (I, P, or B), but is set as the number of MBs in the frame that
are of a certain MB type. Therefore value is in the range between 0 and the maximum
number of MBs in the frame. Usually, value is high for pictures very similar to the
previous reference frame(s), and low for pictures with no similarities to the previous
reference frames(s). An algorithm then uses this value and finds the cuts.

With the dct mode, MERIT only uses the I-frames. This mode is useful for streams
in XING format (only I-pictures). For each block of a specific I-frame, the DC coefficient
(first and dominating coefficient of the cosine transform of the block) is compared to
the DC coefficient of the same block in the previous I-frame. If the difference is higher
than a fixed threshold, a variable called sdd is increased. Finally, sdd is the number of
non-similar blocks of two consecutive I-frames, and reflects the difference between these
I-frames, and therefore the likelihood of a cut between these frames.

In the validation mode, verification is used after a first pass in blockinfo mode to
validate the cuts, when there are ambiguities. The decision whether to perform validation
depends on a fixed threshold of skipped macroblocks in the frame. If the number of
skipped macroblocks is higher than this threshold, the number of significant macroblocks
is found to be insufficient and the validation is performed. For each ambiguous cut, an
algorithm finds the first previous I-frame and the first next I-frame. Then the dct mode

6

is performed for these two frames only. MERIT verifies the presence of a cut and decides
whether to keep or reject this cut.

The full mode is similar to the validation mode, except that the dct validation is
performed for all the cuts, even if there is no ambiguity.

2.3.4 Other tools

MERIT also provides other tools, described by V. Kobla as secondary options for per-
forming specific minor tasks [2)].

The -dispMV and -dispFlow options pop up a window displaying various information
about the macroblocks of each frame. dispMV shows the macroblock types and the
motion vectors, and dispFlow shows the flow vectors. The flow vectors can be
computed and stored without display, using the option -flow.

Motion analysis can be turned on with the -motion option. This subshot analysis is
based on the extracted camera motion information.

Estimation of the DC coefficients of P and B frames is possible with -estimateDC,
in different color spaces.

The -saveppms and -showKey options allow the user to store and display the key-
frames. While -saveppms only stores the key-frames in a ppm subdirectory,
-showKey creates and displays a montage of the key-frames, using ImageMagick
utilities with the stored key-frames.

Content subshot analysis can be performed with -~contentAll and -contentMotion.
-contentAll uses the flow of all frames whereas —contentMotion uses the flow of
frames in consistent camera motion sequences only.

3 mpeg.stat and mpeg2stat

According to what we have seen in earlier sections, in order to make MERIT compatible
with MPEG-2, we mainly need to upgrade the parsing component of MERIT. That is,
we need to understand how mpeg_ stat operates, and how and when the current Line
structure is updated. A new version of mpeg_stat, mpeg2stat, already exists and is able
to analyze MPEG-2 files. We have to modify mpeg2stat in the same way as mpeg_stat
has been modified for MERIT. Thus, an mpeg2stat() function in MERIT must store
information in the same structures as mpeg_stat () did. It is not necessary to touch the
video segmentation part. Therefore, we now focus on describing the parsing program
mpeg_stat, its adaptation to MERIT, and the latest version of mpeg_stat, mpeg2stat.

3.1 mpeg.stat

mpeg_stat is used to provide statistics from an MPEG-1 file. Therefore, it parses the
MPEG bit stream, and collects information. In its original version, the output can be
stored in specific files. Some options are available, listed below.

7

-quiet:
-verify:

-start N:

-end N:
-histogram file:
-gscale file:
-size file:
-offsets file:

-block_info file:

-dct
-rate file:
-ratelength N:

-syslog file:
-userdata file:
-time:

-all file:

Turn off output of frame types/matrices as
encountered

Do more work to help assure the validity of
the stream

Begin collection at frame N (first frame is 1)
End collection at frame N (end >= start)

Put detailed histograms into file

Put gscale information into file

Write individual frame type and size into file
Write high-level header offsets into file

Put macroblock usage into file

Put decoded DCT information into block file
Put instantaneous rate information in file
Measure bit rate per N frames, not one
second’s worth

Store parsing of system layer into file

Store user data information into file

Measure time to decode frames

Put all information into files with basename

file

When mpeg_stat is run without any options and just with an MPEG filename, it
simply parses the stream and outputs information to stdout.

The main() function is located in the main.c file. This function only processes
the options and calls another function for the parsing: mpegVidRsrc(), located in the
video.c file. This file seems to be the main file for the parsing. It contains several useful
functions such as ParseGOP() and ParsePicture().

3.1.1 Storing structures

While reading the bit stream, mpeg _stat puts the information into a specific structure
similar to the Line structure in MERIT. This structure is called VidStream, and is defined
in video.h. Here is a description of this video stream structure, with some explanations.
The GoP (Group of Picture), Pict (Picture), Slice, Macroblock and Block structures
are defined in video.h as well.

/* Video stream structure. */

typedef struct vid_stream

{

unsigned int h_size; /* Horiz. size in pixels. */
unsigned int v_size; /* Vert. size in pixels. */

unsigned int mb_height; /* Vert. size in mblocks. */
unsigned int mb_width; /* Horiz. size in mblocks. */

unsigned char aspect_ratio; /* Code for aspect ratio. */

unsigned char orig picture.rate; /%

Code for picture rate. */

unsigned char picturerate; /* A valid picture rate. */
unsigned int bit_rate; /* Bit rate. */
unsigned int vbv_buffer_size; /* Minimum buffer size. */
BOOLEAN const_param_flag; /* Constrained parameter

flag. */
unsigned char intra_quantmatrix[8][8]; /* Quant. matrix for intracoded

frames. */
unsigned char non_intra_quant matrix[8][8] /* Quant. matrix for non-

intracoded frames. */

char *ext_data; /* Extension data. */
char *user_data; /* User data. */
int ext_size; /* Length of Extension data */
int user_size; /* Length of User data */
GoP group; /* Current group of pictures */
Pict picture; /* Current picture. */
Slice slice; /* Current slice. */
Macroblock mblock; /* Current macroblock. */
Block block; /* Current block. */
int state; /* State of decoding. */
int bit_offset; /* Bit offset in stream. */
unsigned int *buffer; /* Pointer to next byte in
buffer. */
int buf_length; /* Length of remaining
buffer. */
unsigned int *buf_start; /* Pointer to buffer start. */

int max_buf_length; /*
PictImage *past; /*
PictImage *future; /*
PictImage *current; /%
PictImage *ring[RING BUF _SIZE]; /%

} VidStream;

Max length of buffer. */
Past predictive frame. */
Future predictive frame. */
Current frame. */

Ring buffer of frames. */

As we can see, like the List structure in MERIT, this VidStream structure follows
the MPEG specifications about the semantics of the video stream encoding. The video

stream is divided into Groups of pictures, Pictures, Slices, Macroblocks and Blocks.

3.1.2 Parsing techniques

The mpegVidRsrc() function looks at the first bits of the current bit stream. Then
it identifies one of the following codes: Sequence-start-code, Sequence-end-code, GOP-
start-code, Picture-start-code, Slice-start-code, Macroblock-start-code or Block-start-code.

Then it calls a specific function to parse the stream, according to the code found:
ParseSeqHead (), ParseGOP (), ParsePicture(), etc. This process is repeated until the
end of the bit stream is reached (or the last specified frame, if the -end option is used).

9

All the Parse “type”() functions are defined in video.c except for the block type parsing
function, which is defined in the parseblk.c file.

Typically, a Parse “type”() function parses the features of the type and fills in the
VidStream structure. At the same time, it writes some information into files if needed.

3.2 Adaptation of mpeg stat for MERIT

When the mpeg stat program was incorporated into MERIT, some modifications were
needed. We now discuss the relevant modifications that were required by MERIT.

3.2.1 mpegstat()

The main() function of mpeg_stat has been renamed mpeg_stat() in MERIT. While
main() does the processing of the options, mpeg_stat () in MERIT only requires the mpeg
filename and a dct flag. Thus, the modifications are only an adaptation of the option pro-

cessing. Then, like the main () function in mpeg_stat, mpeg_stat () calls mpegVidRsrc().
The MERIT file main.c includes the new files

#include ‘‘Global.h’’
#include‘‘List.h’’

where it defines the extern Line pointers head and current. At the beginning and end
of mpeg_stat (), these pointers are freed and filled with the NULL constant.

mpegVidRsrc() is located in video.c. This file seems to be the one with the most
important modifications. First, there are declarations of external variables and some
necessary internal variables or functions. Then, mpegVidRsrc() and its Parse “type”()
subfunctions have been modified to fill the current Line while parsing. This filling will
now be referred to as the InfolList building algorithm. 1t involves putting the bit stream
information in the current Line and transferring the information from current to Info
and InfolList.

3.2.2 The InfoList building algorithm

Here is a description of the InfoList building algorithm which will be useful for the upgrade
to MPEG-2 processing. The square brackets contain the name of the function where the
action is performed, and its location.

/* extern variables */

extern int totalFrames

extern int numIFrames

extern int maxMV

extern int mpeg mode

extern int passiTotalFrames

extern Info **info

extern Line *current

int h_size,v_size,mbwidth,mb height;

10

/* extern functions */

extern
extern
extern
extern
extern
extern

void add node() /* Actually no use is made of this function */
void refresh node()

int parseDctSelectiveContd(Info **info, int totalframes)

void initInfoBlkMode(Line *current)

void initInfoDctMode(Line *current)

void initInfoDCTValidMode(Line *current)

/* useful intern variables */
MV xforw, *back
int mbtype

[mpegVidRsrc(), video.c]
while not(end of file)
read next_start_code

start:

switch start_code

case sequence_end_code:
exit

case sequence_start_code:
[ParseSeqHead (), video.c]
parse sequence header
get horizontal size of image space (h_size)
get vertical size of image space (vs_size)
calculate macroblock horizontal size of image (mb_width)
calculate macroblock vertical size of image (mb_height)

read next start code
goto start

case group_of_picture code:
[ParseGOP(), video.c]
parse GOP header
refresh node()
current->LineType=GOP
initInfo()

read next start code
goto start

case picture_start_code:

11

[ParsePicture(), video.c]

parse picture header

refresh node()

current->LineType=FRAME

current->frameNo= ‘current frame #’
current->frameType= ‘current frame type’ (OIPB)
totalFrames++

1if frameType=I numIFrames++

initInfo()

read next start code
goto start

case slice_start_code
[ParseSlice(), video.c]
parse slice header
refresh node()
current->LineType=SLICE
initInfo()

read next start code
goto start

default:
[ParseMacroBlock(), video.c]

if (Previous Macroblocks skipped)

{

[ProcessSkippedPFrameMBlocks(), video.c]

[and ProcessSkippedBFrameMBlocks(), video.c]

for each skipped MB, do
{
refresh node()
current->LineType=BLOCK
current->gscale=‘block quantization scale’
current->numBits=0
current->blockNo=‘current block #’
current->blockType=SKIP
initInfo()

}
1

mbtype=‘current MB type’ (FORW,BACK,INTRA,BI, 0)
switch mbtype
case FORW :

12

forw->x=‘current right forw. mv’
forw->y=‘current down forw. mv’

update maxMV (all directions, if necessary)
case BACK :

back->x=‘current right backw. mv’
back->y=‘current down backw. mv’

update maxMV (all directions, if necessary)
case BI

forw->x=‘current right forw. mv’
forw->y=‘current down forw. mv’
back->x=‘current right backw. mv’
back->y=‘current down backw. mv’

update maxMV (all directions, if necessary)
default :

refresh node()

current->LineType=BLOCK

current->blockNo=‘current block #’
current->blockType=mbtype

current->gscale=‘current quantization scale’
current->numBits=‘number of bits for the current MB’
current->forw=forw

current->back=back

if (DCT info needed)

{

current->dctSpecs = ‘current DCT Collection String’

}

initInfo()

read next start code
goto start

Since the structure of mpeg2stat is nearly the same as the structure of mpeg_ stat,
this algorithm will be used in the adaptation of mpeg2stat to MERIT. Next, we have to
understand how mpeg2stat works.

3.3 mpeg2stat

mpeg2stat is a software code written by lan Gordon ((©1998), with original intent to
collect and output statistics from MPEG-1 and MPEG-2 files. It has been adapted
from the MPEG Software and Simulation Group’s decoder mpeg2decode (©MSSG 1996).
It can use the information from a base layer file and from an enhancement layer file
(scalability).

The statistics given by mpeg2stat are basically the same as in mpeg_stat. Moreover,
depending on the verbose level (-v option), mpeg2stat displays MPEG-2 specific infor-

13

mation at different levels (Sequence, GOP, Picture, Slice, Macroblock). With the trace
option (-t) the AC coefficients of each block are given.

There are no storing structures in mpeg2stat, since the decoded information is output
on the fly, while parsing the bit stream. Again, mpeg2stat follows the MPEG specification
structure, giving the information at different specified levels.

3.3.1 Parsing techniques

The main() function is located in mpeg2dec.c, and only processes the options. Then,
in Decode Bitstream() [mpeg2dec.c]|, a first call to Header () [mpeg2dec.c]| finds out
whether there is a video stream. Header () just calls another function, Get_hdr (), located
in gethdr.c. This function recognizes the header type (sequencestart, GOP, picture,
slice, sequence_end).

After the first call to Header (), video_sequence () [mpeg2dec.c]is the function where
the routine begins. Header() is called until there is a picture header. If so,
Decode picture() [getpic.c| is called, then Header() again. This routine ends when
Header () returns an end-of-sequence message. Decode picture() basically calls several
functions which collect all the information about each macroblock in the picture, in-
cluding macroblock type, motion vectors [getvlc.c|, and DCT coefficients of each block
[getblk.c]. The architecture of this program is quite similar to that of mpeg_ stat.

3.3.2 Modifications of mpeg2stat

To prepare mpeg2stat for MERIT, it was necessary to debug it and to add new options.
The debugging consisted mainly of adding some outputs forgotten by the author. In
particular, there was originally no output of DCT coefficients for MPEG-1 files, and no
output of the DC coefficients used by MERIT. Furthermore, the way DCT coefficients are
collected was changed. In the original program, the DCT coefficients were output on the
fly while parsing the stream. In the new version, the DCT coefficients are collected in a
string and output at the end of each macroblock parsing. This string, the dctSpecifics
variable, is useful for the upgrade of MERIT, because it was produced by mpeg_stat and
was used by the segmentation algorithm. After these changes mpeg2stat stores the DCT
information the same way mpeg_stat does.

Finally, -start and -end options were added, which allow the user to collect statistics
only for a specified range of frames. These two options are necessary for the validation

option in MERIT.
3.3.3 Integration

Having created an upgraded version of mpeg2stat, we now have to integrate it into
MERIT, just as mpeg_stat was. That is, the main() function needs to be modified, and
the same InfoList building algorithm must be included in mpeg2stat.

14

4 MERIT 4.0

The first version of MERIT 4.0 was an alpha version whose purpose was to verify the pos-
sibility of integrating with mpeg2stat. We first focus on this version. Then some relevant
MPEG-2 specifications are discussed, and the final version is outlined in more detail.

4.1 MERIT 4.0 alpha

The main idea of the alpha version is that a correct usage of the Infolist building algo-
rithm would allow MERIT to perform its segmentation algorithm. This version indirectly
uses mpeg2stat, insofar as it needs a parsing from mpeg2stat to produce an info.t file.
This file is basically a copy of the standard output of mpeg2stat with the -t trace option
obtained by redirection.

Example: mpeg2stat -t filename.mpg > info.t

info.t contains all the picture, macroblock and block information needed to per-
form block-based segmentation. For MERIT 4.0 alpha, all the functions dedicated to
segmentation were kept and removed from mpeg stat. A main.c file containing a new
mpeg_stat () function was added to parse the info.t file and collect needed information.
While parsing, information is sent to the segmentation part of MERIT, in accord with
the InfolList building algorithm.

Example: MERIT info.t

This version sends only the macroblock type information, omitting the DCT segmen-
tation. The results of the macroblock type algorithm are satisfactory, when tested with
MPEG-1 files or MPEG-2 files coded with frame pictures. This first series of tests made
it apparent that MPEG-2 specific picture structures such as field pictures, and MPEG-2
specific motion compensation modes such as field prediction or Dual Prime mode, would
require preliminary computations before the original MERIT segmentation algorithm
could be used. Another problem was the relatively small number of MPEG-2 video files
available on the Internet, especially when looking for uncommon picture structures or
motion compensation modes.

4.2 MPEG-2 specificity issues

As explained in Appendix A, MPEG-2 is a superset of MPEG-1. To be more precise, an
MPEG-2 decoder is expected to be able to read MPEG-1 files. But an MPEG-2 encoder
cannot write an MPEG-1 file, because of the MPEG-2 specifications. At best an MPEG-
2 encoder can write an MPEG-2 file with the same characteristics as an MPEG-1 file
(frame pictures, frame prediction, frame dct and progressive sequence). However, since
MERIT has been written for MPEG-1 files, it cannot deal with MPEG-2 specifications.
We chose to keep the segmentation part of MERIT as it was, for several reasons. First,
this algorithm was written by others and it was risky to make changes to it. Second,
an adaptation of the segmentation algorithm of MERIT could change the results for
MPEG-1 files, which is not expected in an upgrade. This is the reason why mpeg2stat
was used to parse the MPEG-2 video stream, and send information to MERIT in the
same form that it would expect from an MPEG-1 file. With this solution, MPEG-1 files

15

are handled as in the previous version, and the integrity of MERIT’s algorithm is not
endangered.

Having chosen this solution, it became necessary to find how to handle MPEG-2
specifications. Here are the solutions that were chosen.

e For frame pictures with frame prediction and frame dct, the results are the same
for MPEG-1 and MPEG-2 files (MPEG-1 uses only frame pictures, frame motion
compensation and frame dct). For frame pictures with field prediction, MERIT
uses an average of the two motion vectors corresponding to the two fields.

o Field det gives the same results as frame det, since MERIT uses only the DC
coefficient of each block, which does not depend on dct_type.

o For field pictures, only the first field of a frame is used. This solution was adopted
to avoid ‘inter-field” prediction problems. According to the MPEG-2 specifications,
a macroblock from the second field of a frame may be predicted using motion
vectors with respect to the first field of the same frame. Macroblocks from the
first field can be predicted only with respect to a field of another frame (i.e., not
the second field of the same frame). Since the segmentation algorithm of MERIT
is based on the macroblock inter-frame prediction type, the second field cannot
be used without time-wasting computations. Each macroblock from the first field
is counted twice to respect the total number of macroblocks. The two identical
macroblocks are naturally placed one above the other. Since the macroblocks are
coded in horizontal order first, the identical macroblock is stored in a buffer until the
end of the macroblock line is reached. Then the stored macroblocks are processed
and the buffer is emptied before the next macroblock line in the field is read.
Again, in the case of 16 x 8 MC' prediction, an average of the two motion vectors
is computed and used as the unique motion vector of the macroblock.

e When Dual Prime prediction is used (see Section A.5.5), the motion vector is the
coded vector. There i1s no use including the dm vector, since its length wouldn’t
significantly change the motion vector.

All these approximations of MPEG-2 files imply a loss of precision. But at the same
time, the information seems to be sufficient according to the results of several series of
tests, and using less information increases processing speed. The next section describes
how these adaptations are implemented in MERIT 4.0.

4.3 MERIT 4.0 implementation

In this final version, all files from the segmentation part of MERIT (filenames beginning
with a capital letter) were kept, and the mpeg2stat files (filenames beginning with a
lower-case letter) were added. The mpeg2stat files were taken from the modified version
of mpeg2stat. None of the files of the segmentation component of MERIT were modified,
in accordance with the decisions described above. Of course, the mpeg2stat files were
modified. First of all, all Trace and Verbose outputs were commented out. There is

16

no test to see whether Trace Flag or Verbose Flag is on or off, to increase processing
speed. Moreover, all parts involving an enhancement layer were commented out, since

MERIT uses only the base layer file. The following files were modified:

e global.h

Global.h and List.h were included from MERIT, as well as all needed external
variables and functions (mainly used in the InfoList building algorithm)

e mpeg2dec.c

The main() function was renamed mpeg_stat () (not mpeg2stat(), so there was
no need to change the name when calling in files from MERIT). There is a short
options setup. The InfoList building starts here with FRAME Line update, and
a call to initInfo(). Obsolete functions such as Process_options(), Usage(),
Print options() and Output_Statistics() have been cut off.

e gethdr.c

InfolList building for SLICE Line and GOP Line. The lines required by this algo-
rithm were added, including reset of the current pointer, update of the pointed
Line structure with the parsed information, and calls to the initInfo() functions.

e getpic.c

InfoList building for BLOCK Line as explained for SLICE and GOP, with some needed
computations such as motion vector(s). Moreover, when dealing with a field picture,
a Line buffer is built, so that one macroblock can be sent twice to MERIT via the
Infolist.

e getblk.c

Test for dct flag. If det = 1, DCT coefficients are stored in a dctSpecifics string.
The coefficients are stored in this string on the fly while parsing the stream. This
test improves processing speed when blockinfo mpeg mode is used.

The other files from mpeg2stat have not been modified and are used as in mpeg2stat.

4.4 Tests and further possible improvements

This version was tested with several files. The results were as follows:

o For MPEG-1 files, the results are exactly the same, for all possible options. This
was predictable, since only the parsing part was modified. The only difference is
the processing speed which is sensibly lower with this new version. This is probably
due to the increased number of tests during the parsing process.

e For MPEG-2 files using frame pictures (frame or field prediction, frame or field
det) the results are similar to those for MPEG-1 files. All the cuts are found
for unambiguous clips (as in MPEG-1). The DCT based segmentation algorithm

17

gives odd results, but this already occurred with MERIT 3.3. The -showKey and
similar options do not work with MPEG-2 files, because these options directly use
mpeg_play, which doesn’t support MPEG-2 files. The options used by mpeg play
in this case are not provided by mpeg2play.

o For MPEG-2 files with field pictures, the results are good as well. Of course,
with the -dispMV option, two consecutive lines of macroblocks are identical, and
the displayed macroblock types do not show the reality of the encoded picture.
But this solution seems to work. The segmentation is actually performed on field
pictures with half the height of displayed frame pictures.

All the test files were in 4:2:0 chroma format. MERIT 4.0 has not yet been tested
with other formats, but the block-based segmentation should also work for those. For
the DCT segmentation, MERIT currently stops the parsing of the dctSpecifics string
after the 6th block, so that only the first two chrominance blocks are taken into account.

It is worth noting that all the tests were performed with reconstructed MPEG-2
files. That is, it was necessary to decode MPEG-1 files and encode them as MPEG-2
files, because MPEG-2 video sequences with cuts could not be found on the Internet.
However, the MSSG encoder mpeg2encode was used, and it was possible to construct
almost all types of MPEG-2 files. For interlaced video, interlaced pictures decoded from
an MPEG-2 video clip without cuts were used, and they were reordered to provide some
cuts in the clip before encoding. It was not possible to test Dual Prime predicted MBs
nor clips with both field- and frame-pictures in the same stream, because mpeg2encode
does not provide for these possibilities.

Here is a non-exhaustive list of possible improvements:

e A solution should be found for the -showKey option. Possibly more options should
be added to mpeg2play.

e For sequences with field-pictures, an efficient use of the second field of a frame could
be added, at least to provide a correct output when using the -dispMV option.

5 Conclusion

The new version of MERIT is now able to analyze MPEG-2 files. The modifications were
made in accordance with the MPEG-2 specifications and using the original segmentation
algorithm. MPEG-1 files are analyzed exactly as in the former version, and in case of
MPEG-2 files, the information is processed before being analyzed by the segmentation
algorithm. This approach gives good results, according to our tests.

18

A Appendix: The MPEG-1 and MPEG-2 video standards

A.1 Introduction
The Moving Picture Experts Group (MPEG) [12] is a working group of ISO/IEC in

charge of the development of international standards for compression, decompression,
processing, and code representation of moving pictures, audio and their combination.

The MPEG-1 standard was approved in Nov. 1992, and MPEG-2 in Nov. 1994.

A.2 MPEG video coder source model

The MPEG digital video coding techniques are statistical in nature [7]. Video sequences
usually contain statistical redundancies in both temporal and spatial dimensions. The
basic statistical property upon which MPEG compression techniques rely is inter-pixel
correlation, including the assumption of simple correlated translational motion between
consecutive frames. Thus, it is assumed that the magnitude of a particular image pixel
can be predicted from nearby pixels within the same frame (using Intra-frame coding
techniques) or from pixels of a nearby frame (using Inter-frame techniques). The MPEG
compression algorithms employ Discrete Cosine Transform (DCT) coding techniques on
image blocks of 8 x 8 pixels to efficiently exploit spatial correlations between nearby pixels
within the same image.

However, if the correlation between pixels in nearby frames is high, i.e. in cases where
two consecutive frames have similar or identical content, it is desirable to use Inter-frame
DPCM coding techniques employing temporal prediction (motion-compensated predic-
tion between frames). In MPEG video coding schemes an adaptive combination of both
temporal motion-compensated prediction followed by transform coding of the remaining
spatial information is used to achieve high data compression (hybrid DPCM/DCT coding
of video).

A.3 Compression techniques
A.3.1 Subsampling and interpolation

The basic concept of subsampling is to reduce the dimension of the input video (horizontal
dimension and/or vertical dimension) and thus the number of pixels to be coded prior
to the encoding process. At the receiver the decoded images are interpolated for display.
Since the human eye is more sensitive to changes in brightness than to chromaticity
changes, the MPEG coding schemes first divide the images into YUV components (one
luminance and two chrominance components); then, the chrominance components are
subsampled relative to the luminance component with a Y:U:V ratio specific to particular
applications (with the MPEG-2 standard, a ratio of 4:1:1, 4:2:2, or 4:4:4 is used).

A.3.2 Transform domain coding

The purpose of transform coding is to de-correlate the image content and to encode
transform coefficients rather than the original pixels of the images. To this end the input
images are split into disjoint blocks of pixels. Of many possible alternatives, the Discrete

19

Cosine Transform (DCT) applied to small image blocks, usually 8 x 8 pixels, has become
the most successful transform for still image and video coding. A major objective of
transform coding is to make as many transform coefficients as possible small enough so
that they are insignificant and need not be coded for transmission.

The DCT coefficients are put into a matrix, called the DCT matrix. On average only
a small number of DCT coefficients need to be transmitted to the receiver to obtain a
valuable approximate reconstruction of the image blocks. Moreover, the most signifi-
cant DCT coefficients are concentrated around the upper left corner of the matrix (low
DCT coefficients) and the significance of the coefficients decays with increased distance.
Since the human viewer is more sensitive to reconstruction errors related to low spatial
frequencies than to high frequencies, a frequency-adaptive weighting (quantization) of
the coefficients according to human visual perception (perceptual quantization) is often
employed to improve the visual quality of the decoded images for a given bit rate.

A.3.3 Motion compensated prediction

The concept of motion compensation is based on the estimation of motion between video
frames, i.e. if all elements in a video scene are spatially displaced, the motion between
frames can be described by a motion vector. To this end images are usually separated into
disjoint blocks of pixels (16 x 16 pixels in the MPEG-1 and MPEG-2 standards) and only
one motion vector is estimated, coded and transmitted for each of these blocks. In the
MPEG compression algorithms the motion-compensated prediction techniques are used
for reducing temporal redundancies between frames and only the prediction error images
— the differences between the original images and the motion compensated prediction
images — are encoded, using the DCT technique.

A.4 The MPEG-1 standard

The MPEG-1 standard is formally referred to as ISO 11172 and consists of several parts
(1. System, 2. Video, 3. Audio, 4. Conformance, 5. Software). We will focus on the
video part 11172-2. The MPEG-1 Video standard was originally aimed at coding video
of SIF resolution (352 x 240 at 30 noninterlaced frames/s or 352 x 288 at 25 noninter-
laced frames/s) at bit rates of about 1.5 Mbits/s, for applications such as CD-i (compact
disc interactive). However, it also allows much larger picture sizes and correspondingly
higher bit rates. This standard specifies the video bit stream syntax and the correspond-
ing video decoding process. The basic MPEG-1 video compression technique is based
on a macroblock structure, motion compensation, and the conditional replenishment of
macroblocks.

A.4.1 Macroblocks and I-frames

The MPEG-1 coding algorithm encodes the first frame of a video sequence in Intra-
frame coding mode (I-picture), by using block-based DCT coding of 8 x 8 pixel blocks,
followed by quantization. The DC coefficient (average value and first coefficient) is
quantized with a uniform midstep quantizer with stepsize as specified by the param-
eter intra dc_precision = 3 — log, stepsize. AC coefficients (the other 61 coefficients)

20

Y Cb Cr

12 ..

Figure 1: Macroblock structure [6]. A macroblock comprises four luminance blocks (Y1,

Y2, Y3, Y4) and two chrominance blocks (Cr, Cb). Each block has a size of 8 x 8 pixels.

are quantized with a uniform midstep quantizer having a stepsize under control of the
parameter quantizer scale. A high stepsize decreases the number of bits needed to
transmit the information, but also decreases the image quality. Each color input frame
in a video sequence is partitioned into non-overlapping macroblocks. Fach macroblock
contains six 8 X 8 blocks of data from both luminance and co-sited chrominance bands —
four luminance blocks and two chrominance blocks, each of size 8 x 8 pixels (Fig. 1). Thus
the sampling ratio between Y:U:V luminance and chrominance pixels is 4:1:1 (sometimes
called 4:2:0). For an I-picture, the frame is partitioned into such macroblocks. Then
each luminance and chrominance block from each macroblock is coded using the DCT
technique.

A.4.2 Zig-zag scanning

The concept of zig-zag scanning of the coefficients is outlined in Fig. 2. The zig-zag scan
attempts to trace the DC'T coefficients according to their significance, from the top-left
corner to the bottom-right corner. Only the non-zero quantized DCT coefficients are
encoded. The scanning of the quantized DCT-domain 2-dimensional signal followed by
variable-length code-word assignment (Huffman coding) for the coefficients serves as a
mapping of the 2-dimensional image signal into a 1-dimensional bit stream. The non-
zero AC coefficient quantizer values (length) are detected along the scan line as well as
the distance (run) between two consecutive non-zero coefficients. Each consecutive (run,
length) pair is encoded by transmitting only one codeword (Run Length Encoding).

A.4.3 P-frames and B-frames

Each subsequent frame is coded using Inter-frame prediction (predicted pictures, or P-
pictures) — only data from the nearest previously coded I- or P-frame is used for pre-
diction. For coding P-pictures, the previous I- or P-picture frame N — 1 is stored in
a frame store in both encoder and decoder. Motion compensation is performed on a
macroblock basis — only one motion vector is estimated between frame N and frame
N — 1 for a particular macroblock to be encoded. These motion vectors are then coded.
The motion-compensated prediction error is calculated by subtracting each pixel in a
macroblock from its motion-shifted counterpart in the previous frame. A 8 x 8 DCT
is then applied to each of the 8 x 8 blocks contained in the error-image-macroblock,
followed by quantization of the DCT coefficients with subsequent zig-zag scanning and

21

horizontal
frequency

® ®13x8DCT

L 2
—
- % 9 = . 0

8x8IDCT6

-
-
-
L]
L]
L
-
-

4 & & & & & = = - & x o=
. 4 @ + = - = = = o
L L L L L] - L J a - » - -]]
LJ
vertical
frequency
8 x 8 image block 8 x 8 DCT coefficients block

Figure 2: Zig-zag scan of the DCT coefficients of an 8 x 8 block. [§]

run-length coding. The quantization stepsize can be adjusted for each macroblock in a
frame (Fig. 3). The advantage of coding video using motion compensation techniques
is the reduction of the residual signal to be coded compared to pure frame difference
coding.

To further explore the significant advantages of motion compensation and motion in-
terpolation, the concept of B-pictures (bidirectionally predicted pictures) was introduced
by MPEG-1. B-pictures can be coded using motion-compensated prediction based on
the two nearest already coded frames (either I-pictures or P-pictures). Since the coding
order of the pictures is not the same as the displaying order, B-pictures can use both
past and future frames as references (Fig. 4). The user can arrange the picture types in a
video sequence with a high degree of flexibility to suit diverse application requirements.

A.4.4 Conditional replenishment

An essential feature supported by MPEG-1 is the possibility of updating macroblock
information at the decoder only if needed (i.e. if the content of the macroblock has
changed in comparison to the content of the same macroblock in the previous frame).
This feature is called conditional replenishment. The key to efficient coding of video
sequences at low bit rates is the selection of appropriate prediction modes to achieve
conditional replenishment. The MPEG-1 standard distinguishes between three different
macroblock coding types (MB types):

Skipped MB — prediction from previous frame with zero motion vector. No information
about the macroblock is coded or transmitted to the receiver.

Inter MB — motion-compensated prediction from the previous frame is used. The MB
type, the MB address and, if required, the motion vector, the DCT coefficients and
quantization stepsize are transmitted.

Intra MB — no prediction is used from the previous frame (intra-frame prediction only).
Only the MB type, the MB address, the DCT coefficients and the quantization

22

Cb

[oe]
-

20uaJayIp

-

16 ¢ - "~ - best match ¢
~ DCT + Quant. + RLE

16 \\\ ¢

> motion vector —___

Variable Length Coding

0100110 ...

Figure 3: Forward prediction of a macroblock in a P-picture [6]. DCT: Discrete Cosine
Transform, Quant.: Quantization, RLE: Run Length Encoding

past reference target future reference

DCT + Quant. + RLE

Y

motion vectors ——— | variable Lenght Coding |— 011010 ...

Figure 4: Bidirectional prediction of a macroblock in a B-picture [6]. DCT: Discrete
Cosine Transform, Quant.: Quantization, RLE: Run Length Encoding

23

Ir"' Video Sequence

le— Group of Pictures —a

Block

Pictures

Figure 5: Video sequence structure as specified by MPEG [6]. A Group of Pictures
usually begins with an [-picture, followed by P- and B-pictures. Each picture is divided
into slices, macroblocks and blocks.

stepsize are transmitted to the receiver.

A.4.5 The MPEG-1 video stream syntax

Here is a coarse view of the video stream syntax. In typical MPEG-1 encoding, an
input video sequence is divided into units of groups-of-pictures (GOPs), where each GOP
consists of an arrangement of one I-picture, P-pictures, and B-pictures. A GOP serves
as a basic access unit. Each picture is divided further into one or more slices that offer
a mechanism for resynchronization and thus limit the propagation of errors. Each slice
is composed of a number of macroblocks. Each macroblock is composed of four 8 x 8
luminance blocks and two chrominance blocks (see Fig. 5). In P-pictures each macroblock
can have one motion vector, whereas in B-pictures each macroblock can have as many as
two motion vectors. Each part of this syntax (GOPs, Pictures, Slices) is encoded with a
special header (as shown in Fig. 6), and programs such as decoders or MERIT parse the
MPEG-file video bit stream, and recognize these headers. Thus, they can efficiently deal
with further data.

A.5 The MPEG-2 standard

MPEG-2 is an extension of the MPEG-1 international standard for digital compression of
audio and video signals. MPEG-2 is directed at broadcast formats at higher data rates;
it provides extra algorithmic tools for efficiently coding interlaced video, supports a wide
range of bit rates, and provides for multichannel surround sound coding. It is also known
as ISO/IEC 13818.

The MPEG-2 standard is capable of coding standard-definition television at bit rates
from about 3-15 Mbit/s and high-definition television at 15-30 Mbit/s. Since MPEG-2
is a superset of MPEG-1, MPEG-2 decoders will also decode MPEG-1 bit streams.

24

guantized D CT coefidents for one 8x8 block (variable length coded) Block Layer
o= 7/

- ’
T / Macroblock layer
T 1 T . :
macroblock [optional) motion coded luminance | chrom . (containing fou.r luminance
address | ™29% | quantisation value |vectors |block pattern | blocks | blogks | and two chrominance bloc
S~ —_--_ for4:2:0 video)
RS o Slice layer
start | slice |guantisation |macroblock | macroblock macroblock (containing n
code | address walle a i | n-1 macroblocks)
- - : S : Picture layer
start pictures zlice sice | dHice (containing m
code flags a 1 m-1 .
_) slices)
T-al - i
-~ 1
T~a _ 1
R o //
stant | =egquence q&%ﬁligglo)n profile | picture | picture picture SequeAn(A:e layer
code | parameters weinhting matrx | 21 12vel a 1 | o1 (containing p

pictures)

Figure 6: Bit stream structure as specified by MPEG [8]. Each picture is divided into
m horizontal slices, each comprising n macroblocks. For 4:2:0 video, each macroblock
contains four luminance and two chrominance 8 x 8 blocks of quantized DCT coefficients.
The profile and level indication appears only in MPEG-2 files.

A.5.1 Profiles and levels

The implementation of the full syntax of MPEG-2 may not be practical for most ap-
plications. MPEG-2 has introduced the concept of “Profiles” and “Levels” to stipulate
conformance between equipment not supporting the full implementation. Profiles and
levels provide means for defining subsets of the syntax and thus the decoder capabilities
required to decode a particular bit stream. A profile is a subset of algorithmic tools and a
level identifies a set of constraints on parameter values (such as picture size and bit rate).
The specifications of each level and each profile are described in Table 1 and Table 2.
A decoder that supports a particular profile and level is only required to support the
corresponding subset of the full standard and set of parameter constraints. The main
profile at the main level is the most common type and is referred to as MP@MIL.

Currently, the major interest is in the main profile at the main level for applications
such as digital television broadcasting (terrestrial, satellite and cable), video-on-demand
services, and desktop video systems.

A.5.2 MPEG-2 MAIN Profile and MPEG-1
The MPEG-2 algorithm defined in the MAIN Profile is a straightforward extension of

the MPEG-1 coding scheme to accommodate coding of interlaced video, while retaining
the full range of functionality provided by MPEG-1. Identical to the MPEG-1 stan-
dard, the MPEG-2 coding algorithm is based on the general hybrid DCT/DPCM coding

25

‘ Level ‘
High

Parameters ‘

1920 samples/line
1152 lines/frame
60 frames/s

80 Mbit /s

1440 samples/line
1152 lines/frame
60 frames/s

60 Mbit /s

720 samples/line
576 lines/frame
30 frames/s

15 Mbit/s

352 samples/line
288 lines/frame
30 frames/s

4 Mbit/s

High 1440

Main

Low

Table 1: Upper bounds of parameters at each level of a profile.

‘ Profile

Algorithms

High

Supports all functionality provided by the Spatial Scalable Profile
plus the provision to support three layers with the SNR and Spa-
tial scalable coding modes. 4:2:2 YUV-representation for improved
quality requirements

Spatial scalable

Supports all functionality provided by the SNR Scalable Profile plus
an algorithm for Spatial scalable coding (two layers allowed). 4:0:0
Y UV-representation

SNR scalable

Supports all functionality provided by the Main Profile plus an
algorithm for SNR scalable coding (two layers allowed). 4:2:0 YUV-

representation

Main Non-scalable coding algorithm supporting functionality for coding
interlaced video, random access and B-picture prediction modes.
4:2:0 YUV-representation

Simple Includes all functionality provided by the Main Profile but does not

support B-picture prediction modes. 4:2:0 YUV-representation

Table 2:

Algorithms and functionalities supported by each profile.

26

scheme, incorporating a macroblock structure, motion compensation, and coding modes
for conditional replenishment of macroblocks. The concept of I-pictures, P-pictures and
B-pictures is fully retained in MPEG-2 to achieve efficient motion prediction and to assist
random-access functionality.

A.5.3 Interlaced video

The MPEG-1 standard deals only with progressive video. That is, all the pixels of a
frame have been taken at the same instant, as in film. The original objective of MPEG-2
was to efficiently code interlaced video, which is mainly used in television. Television
services in the United States currently broadcast video at a frame rate of just under
30 Hz (29.97 Hz). Each frame consists of two interlaced fields, giving a field rate of
approximately 60 Hz. The first field of each frame contains only the odd-numbered
lines (top field) of the frame (numbering the top frame line as line 1). The second field
contains only the even-numbered lines (bottom field) of the frame and is sampled in the
video camera 20 ms after the first field. It is important to note that one interlaced frame
contains fields from two instants in time. European television is similarly interlaced but
with a frame rate of 25 Hz.

MPEG-2 introduced the concept of frame pictures and field pictures along with par-
ticular frame prediction and field prediction modes to accommodate coding of progressive
and interlaced video. For interlaced sequences it is assumed that the coder input consists
of a series of odd and even fields that are separated in time by a field period. Two fields of
a frame may be coded separately (field pictures). In this case each field is separated into
adjacent non-overlapping macroblocks and the DCT is applied on a field basis. Alterna-
tively, two fields may be coded together as a frame (frame pictures), as in conventional
coding of progressive video sequences. Here, consecutive lines of the top and bottom
fields are simply merged to form a frame. It is worth noting that both frame pictures
and field pictures can be used in a single video sequence.

A.5.4 Picture types

The MPEG-2 syntax specifies the different types of pictures that may be coded and
displayed [9]. Several variables are used to define a picture type, as shown in Fig. 7.
Here we will focus only on the semantic meaning of the relevant variables.

e Sequence level:

progressive_sequence is a 1-bit integer, which indicates whether the sequence
contains only progressive frame pictures (1) or not (0). This is the primary
switch between interlaced and progressive video sources, and gives the display
mode (progressive or interlaced)

e Picture level:

progressive frame (1-bit integer) 1 indicates that the two fields of the frame
correspond to the same instant, for example, film. It gives the video caption

27

mode (progressive or interlaced video). If progressive_sequence = 1 then
we must have progressive frame = 1. That is, an originally interlaced frame
cannot be displayed as a progressive frame. Nevertheless, MPEG-2 allows for
progressive coded pictures, but interlaced display (framepicture = 1 and
progressive sequence = 0).

picture structure defines the way a picture is internally coded. This 2-bit integer
takes the following values: 3 (11) for a frame picture, 1 (01) for a top-field
picture, and 2 (10) for a bottom-field picture. In the case of frame pictures,
the two fields are interleaved to form a frame, and for field pictures, the two
fields are coded separately. In this case, the picture coding type (I, P, B) is
the same for the two fields of the same frame, except for I-pictures, where the
second field can be a P-picture. If progressive frame = 1 (progressive coded
picture), the picture must have a frame structure.

top_field first and repeat first field are two indicators whose meaning de-
pends on the values of progressive sequence and picture_structure. If
progressive sequence = (and picture structure = 3 (frame), then
topfield first indicates which of the two fields must be displayed first
(top:1 bottom:0) and repeat first field indicates whether the first field
should be repeated to respect the top-bottom display. Note that repeat first field
cannot be equal to 1 if progressive frame = 0. If picture structure =1
or 2 (field pictures), then top_field first = 0 and repeat first field = 0,
and the display order is first coded first displayed. If progressive_sequence
= 1 then the two bits [topfield first, repeat first field] give the
number of times the progressive picture is displayed (00: 1 frame (MP@ML),
01: 2 frames, 11: 3 frames)

To summarize, progressive sequence gives the display mode (interlaced/progres-
sive), progressive frame the original type of picture (interlaced/progressive), and
picture_structure the picture storage mode (frame picture/field picture).

A.5.5 Frame and field predictions

New motion-compensated field prediction modes were introduced by MPEG-2 to effi-
ciently encode field pictures and frame pictures. In field prediction, predictions are made
independently for each field by using data from one or more previously decoded fields,
i.e. for a top field a prediction may be obtained from either a previously decoded top
field (using motion compensated prediction) or from the previously decoded bottom field
belonging to the same picture. An indication of which reference field is used for predic-
tion is transmitted with the bit stream. Within a field picture all predictions are field
predictions.

Frame prediction makes a prediction for a frame picture based on one or more previ-
ously decoded frames. In a frame picture either field or frame predictions may be used and
the particular prediction mode preferred can be selected on a macroblock-by-macroblock
basis. Here is a description of each possible prediction type.

28

/

progressive_sequence

11

=o

progressive_frame

"= o

picture_structure

progressive_frame

1P Field ,,btm

= =

="%

picture_structure

picture_structure

Frame

3

=%

top_field_first / repeat_first_field

top_field_first / repeat_first_field

top_field_first / repeat_first_field

top_field_first / repeat_first_field

Interlaced display

Interlaced display

Interlaced display

Progressive display

First coded first displayed Btm 1st - 2 fields Top 1st - 2 fields zf?e’fé’;’"‘fﬁ‘ems znelggpfgsftlelds Lframe 2 frames 3 frames
00 01 10 11 00 01 11

frame_pred_frame_dct =0

Field prediction
16 x 8 MC
Dual Prime mode

Frame dct

Frame prediction
Field prediction
Dual Prime mode

Frame dct
Field dct

frame_pred_frame_dct =1

MPEG-1

Frame prediction for frame-pictures

Frame dct

Figure 7: MPEG-2 picture types and corresponding prediction modes and dct types.

29

Frame macroblock

Top field pixels

16 16 x 8 Field blocks

Bottom field pixels

/\\

Figure 8: Field prediction for frame pictures. Target macroblocks are split into top-field
pixels and bottom-field pixels.

e Frame pictures

Frame prediction is exactly the same as in MPEG-1. Each macroblock has up
to one motion vector (forward prediction) in P-frames and up to two motion
vectors (forward and backward) in B-frames.

Field prediction for frame pictures is a prediction mode where the target
macroblock is first split into top-field pixels and bottom-field pixels, consti-
tuting two 16 x 8 “field macroblocks” (see Fig. 8). Then, for each of these
two half-MBs, the prediction half-MB(s) is (are) found in previous reference
fields. For P-frame pictures, the prediction half-MB may come from either
field of the two most recently coded I- or P-frames. For B-frame pictures, the
backward prediction half-MB is taken from either field of the most recently
coded I- or P-frame, and the forward prediction half-MB from either field of
the last but one I- or P-frame. To select the prediction field used, MPEG fills
the motion vertical field select[r] [s] variable as described below. Up
to two motion vectors are assigned to each MB in a P-frame picture (one for
each half-field-MB), and up to four in a B-frame picture.

motion vertical field select[r][s] gives the field selected for the predic-
tion. Index r=0 indicates the first MV (first half-MB) and r=1 indicates the
second MV (second half-MB). Index s=0 indicates the forward MV, s=1 the
backward MV. 0 indicates the top field, 1 indicates the bottom field.

Dual-Prime mode is only used for P-pictures. With this mode there is only
one motion vector, from which two preliminary predictions are computed.
The first preliminary prediction is identical to frame prediction, except that
each prediction pixel must have the same parity as the target pixel. The
second preliminary prediction is derived using a computed motion vector plus
a small differential motion vector (dmuvector). The computed motion vector is
obtained by a temporal scaling of the transmitted motion vector, and for the

30

final corrected motion vector, each prediction pixel has opposite parity to the
target pixel. The two preliminary predictions are then averaged together to
form the final prediction.

o Field pictures

Field prediction for field pictures is similar to field prediction for frame pic-
tures, except that there is no half-MB (in field pictures all the pixels belong
to the same field). So for a particular MB, all pixels have the same parity
(i.e. they all come from the same field). For P-field pictures, the prediction
MB may come from either of the two most recently coded I- or P-fields, even
when coding the second field of a frame, if the prediction field is the first field
of the same frame. For B-field pictures, the backward prediction MB is taken
from either field of the most recently coded I- or P-frame, and the forward
prediction MB from either field of the last but one I- or P-frame. For field
selection, the motion_vertical field select|r][s] variable is also used, but with
r=0 only (only one MB). Up to one motion vector is assigned to each MB in
a P-field picture and up to two in a B-field picture.

16 x 8 MC prediction mode is similar to field prediction for frame pictures: The
target MB is split into an upper half and a lower half, and a separate field
prediction is performed for each half, as in field prediction for frame pictures.
Up to two motion vectors are assigned to each MB in a P-frame picture (one
for each half-field-MB), and up to four in a B-frame picture.

Dual-Prime mode for P-pictures is the same as in frame pictures except that for
the two preliminary predictions, reference pixels are taken from only one field:
the same parity as the target MB for the first prediction, and the opposite
parity for the second prediction.

There are three motion modes for each picture type (frame or field), one using one
motion vector for P-pictures and two for B-pictures (frame prediction for frame pictures,
field prediction for field pictures), another using two motion vectors for P-pictures and
four for B-pictures (field-prediction for frame pictures, 16 x 8 MC for field pictures), and
the last using one motion vector and a dmvector (Dual-Prime for P-pictures). It is worth
noting that the macroblock type seems to be chosen before the motion compensation
mode in most encoders.

A.5.6 Frame-dct and field-dct coding

MPEG-2 provides another feature for dealing with interlaced pictures. For frame pictures,
on a macroblock-by-macroblock basis, the dct_type can be set as frame_dct (0) or field_dct
(1). The frame dct type is the same dct coding as in MPEG-1. With the field dct type,
just prior to performing the DCT, the encoder may reorder the luminance lines within a
MB so that the first 8 lines come from the top field, and the last 8 lines come from the
bottom field. This reordering is undertaken just after the Inverse DCT. With field_dct

31

horizontal

| frequency
!
L]
|
I
s ’ ’ I
;o - P LI = m
;o \ \ [T ol \
i \ \ \ I v// \ I // \
| I | I
S R T Y T '
4 - - | I -
. - I [
/ 3 | I
. - o A A A
! 1 A Y
\ .n [v‘ g /l h
/ / ;oL
J\ T I’ ‘\ ,’ T / \i " ,’ T
I 1 I
I [. .
- ! s, m w . //]
\ [[!
\ ; ,/ m 'I/ " ! ,, '
1 |
\ul' o g M ¥ o a
Y
vertical
frequency

8 x 8 DCT coefficients block

Figure 9: Alternate scan of the DCT coefficients of an 8 x 8 block.

in an interlaced frame picture, the vertical correlation within the luminance blocks is
increased.

For each frame, the frame pred frame dct is a kind of shortcut variable. If
frame pred frame dct = 1, then only frame prediction and frame DCT are used within
the frame. If frame pred frame dct = 0 then all the motion compensation modes and
all the DCT types can be used. If progressive frame = 1 then frame pred frame dct
=1, and if picture_structure =1 or 2, then frame pred frame dct = 0.

In fact, for each picture type (as described before), only specific types of compensation

modes and dct coding are allowed (see also Fig. 7).

A.5.7 Alternate scan

The main effect of interlace in frame pictures is that since adjacent scan lines come from
different fields, vertical correlation is reduced when there is motion in the scene. This
vertical correlation reduction provides a non-optimum zig-zag scanning order. That is
the reason why MPEG-2 has an Alternate-Scan mode, shown in Fig. 9. The type of scan
may be specified by the encoder on a picture-by-picture basis.

A.5.8 Chrominance formats

MPEG-2 specifies additional Y:U:V luminance and chrominance subsampling ratio for-
mats to assist and foster applications with high video quality requirements. In addition to
the 4:1:1 format already supported by MPEG-1 the specification of MPEG-2 is extended
to 4:2:2 and 4:4:4 formats suitable for studio video coding applications. 4:2:2 means the
chrominance is horizontally subsampled by a factor of two relative to the luminance;
4:1:1 (also called 4:2:0) means the chrominance is horizontally and vertically subsampled
by a factor of two relative to the luminance. In the MAIN Profile at MAIN Level, only

the 4:2:0 format is allowed.

32

A.5.9 MPEG-2 scalability techniques

The scalability tools standardized by MPEG-2 support applications beyond those ad-
dressed by the basic MAIN Profile coding algorithm. The intention of scalable coding
is to provide interoperability between different services and to flexibly support receivers
with different display capabilities. Receivers either unable or unwilling to reconstruct
the full-resolution video can decode subsets of the layered bit stream to display video at
lower spatial or temporal resolution or with lower quality. Another important purpose of
scalable coding is to provide a layered video bit stream which is amenable to prioritized
transmission.

For instance, two layers can be provided, each layer supporting video at a different
scale, 1.e. a multiresolution representation can be achieved by downscaling the input
video signal into a lower-resolution video (downsampling spatially or temporally). The
downscaled version is encoded into a base layer bit stream with a reduced bit rate. The
upscaled reconstructed base layer video (upsampled spatially or temporally) is used as
a prediction for the coding of the original input video signal. The prediction error is
encoded into an enhancement layer bit stream. If a receiver is either unable or unwilling
to display the full-quality video, a downscaled video signal can be reconstructed by
decoding only the base layer bit stream. Thus scalable coding can be used to encode
video with a suitable bit rate allocated to each layer in order to meet specific bandwidth
requirements of transmission channels or storage media. Browsing through video data
bases and transmission of video over heterogeneous networks are applications expected
to benefit from this functionality.

A.5.10 The MPEG-2 video stream syntax

The MPEG-2 video standard specifies the syntax and semantics of the compressed video
stream produced by the video encoder. Most of MPEG-2 consists of additions to MPEG-
1. The video stream syntax is flexible to support the variety of applications envisaged
for the MPEG-2 video standard. Tike MPEG-1, the syntax is constructed in a hier-
archy of headers which are: Video sequence header, Group of Pictures header, Picture
header, Slice header and Macroblock header. The block contains the DCT coefficients
(see Fig. 5 and Fig. 6). Useful information about these headers can be found in the
MPEG specifications [9].

33

B Appendix: UML diagrams

These UML diagrams (Figs. 10 to 13) provide further explanations about the structure
of MERIT 4.0. Since MERIT is not an object-oriented application, class diagrams are
not used here. The structure diagrams show the structure of MERIT and of typical
MPEG files, and the collaboration diagrams depict the interactions between the different
components of MERIT.

34

3l O3dIN

suondo

1asn

FENET

95B2-1aMO| B UlIM
Buiuuibaq sa|i4

JENET

aseo-saddn ue yum
Buiuuibaq saji4

1eisgbadw

Buissadsold

O vLlIddN

Figure 10: MERIT 4.0 general structure diagram.

35

MPEG file

'

File name

Bitstream

Sequence Header

GOP

GOP Header

Picture

A
A
A

t
i
f

Picture Header Slice

1’ 1

1 n

Slice Header Macroblock

1’ 1

1 6,8,12

Macroblock Header Block

1 1

0.2,4 0.1 0..63

Motion vector

DC coefficient

AC coefficient

Figure 11: MPEG file structure diagram.

36

oo TTTTTTTTTTTTTTTT T It
| AIAAArrrrrrrr
9M|qyab RTNET R
u| suonauny ul suonouny I
<<s|[ed>> <<s|ea>> .-~ T _
! .- -
()xo0|goioew apodsp
020 |- oo e N
(aamoidepodaqg | - _ _ S~
2'o1d1eb ul suonouny Ayyyyyy,/y-yyy.
<<s|eo>> [Tt =
\,7 J'asled
| _-[7] Oropumu Spina p- Isropul
<<S|[eo>> -
I PP 7
| <<s|eo>> -~ -
1 x\\\\ -7
- 0078 SPIng e |
R4 | <<S9sSN>>
9-09pzhadw ‘()aousnbas™ oapin Y
<<S|[ed>>-
T A o> vy sping] aurT uaLNd
| <<S|[ea>3. _
<<s|[ed>> | 30178 'd09 -7
. spjin -
j 9-99pzBadw PING p- -
‘()1opeaH =TT
bodur 0 _ <<s|jeos> AN e =TT
9-09pzbadw ‘()weansug spodaq |” A 5 - =T
i P <<S9SN>> ouppeb -7 |-
‘OpHD Fofoo |
Ho.. . N
___--F---[oesied ‘(anpogasted ||
e 7 \
-7 <<S|[ed>> .
9 0apgbhadw ‘()reis Badw < e ________
<<S|[ed>> [T~ oesred ‘()anpgesred
<<s|[ea>> N
NN
NN
2" LIY3AN ‘(Ourew

1e1szbadw

Buissasold

<<sasn>> |

<<SaSN>>

<<SasSN>>

<<Sasn>>

\AAmmmsvv

<<S9sSN>>

<<SasN>> _

<<Sasn>>

- =

SIUL19I200 10d

=

(s)10108A UONOW

J19peaH X20|qoIoeN

1apeaH ainpid

I3pesH 40O

JapeaH aouanbag

|

sweus|y O3dIN

- =

suondo

19sn

lagram.

InfolList building collaboration d

Figure 12

37

User

Processing

MPEG file

<<uses>>
- - R

Options

<<uses>>
- -

<<depends on>>

main(), MERIT.c

T T
F==A

<<calls>> | {or} -

|
|
v

<<calls>>

parseBIkFile()

parseDctFile()

1sropul

builds

A
I
|
; Parse.c Parse.c
I
: T T T
| <<calls>> | l R) <<calls>>
T
| | |
I
I I
i - : <<calls>> , !
: Analysis functions v v
! <<uses>>
onlywith =y 1 ------ T I
VALID mode analyselnfol() analyseDctinfo()
Analysis.c Analysis.c
called by called by
parseBIlkFile parseDctFile
<<uses>>
jmm - - - ==
L
Other analysis functions:
parseDctSelective()
P analyzeReplayShots(), Parse.c
arse.c AnalyseMotion, Motion.c
AnalyseFlow(), Flow.c
displayMVs(), SRGPInterface.c
1 T e
} . builds P>
, builds
I
: <<uses>> .
******************************** >| SceneChangelList
updates B>
A
|
|
prints the list . . ! <<uses>>
of key-frames printSceneList() !
tostdout Lo _-__4 Scenec |

1e1szbadw

Figure 13: Processing collaboration diagram.

38

References

1]

2]
3]

[4]

[10]

[11]

[12]

B. G. Haskell, A. Puri, and A. N. Netravali,“Digital Video: An Introduction to
MPEG-27, Chapman and Hall, 1997.

V. Kobla, MERIT Documentation, MERIT Software Version 3.1.

V. Kobla and D. S. Doermann, “Indexing and retrieval of MPEG compressed video”,
Journal of Electronic Imaging, Vol. 7, pp. 294-307, 1998.

V. Kobla, D. S. Doermann, and K. I. Lin, “Archiving, indexing and retrieval of video
in the compressed domain”, Proc. of the SPIE Conference on Multimedia Storage

and Archiving Systems, Vol. 2916, pp. 78-89, 1996.

V. Kobla, D. S. Doermann, and A. Rosenfeld, “Compressed Domain Video Segmen-
tation”, CfAR Technical Report CAR-TR-839 (CS-TR-3688), 1996.

V. Lo, “A Beginner’s Guide for MPEG-2 Standards”, http://www.fh-friedberg.
de/fachbereiche/e2/telekom-labor/zinke/mk/mpeg2beg/beginnzi.htm

T. Sikora, “MPEG Digital Video Coding Standards”, Digital Electronics Con-
sumer Handbook, McGraw Hill Company, Ed. R. Jurgens, http://wwwam.HHI.DE/
mpeg-video/papers/sikora/mpegl_2/mpegl_2.htm

P. N. Tudor, “MPEG-2 video compression”, FElectronics and Communication
Engineering Journal, 1995, http://www.bbc.co.uk/rd/pubs/papers/paper_14/
paper_14.html

“Generic Coding of Moving Pictures and Associated Audio Information: Video”,

ISO/IEC 13818-2: Draft International Standard, 1994.

V. Kobla, “MERIT Video Segmentation”, http://documents.cfar.umd.edu/
LAMP/Media/Presentations/MERITtheory/index.htm

V. Kobla, “MERIT MPEG Encoded Retrieval and Indexing Toolkit”,
http://documents.cfar.umd.edu/LAMP/Media/Presentations/MERITver3talk/
index.htm

The MPEG Home Page — Moving Picture Experts Group Website, http://drogo.
cselt.it/mpeg

39

